Make Way for High-Density Fiber Optic Cables

More fiber density in less space. From 5G to data centers to FTTx, the picture is clear. Everyone uses more bandwidth than ever before. And while bandwidth demand may seem endless, the space to install fiber optic cable isn’t. That’s why being able to install more optical fiber in the same or less space can be a game changer for today’s network operators. And it’s why “High Density” is also a critical word for many service providers today.

 

With microcables and rollable ribbon cables that increase fiber density while saving on space, OFS is your high-density fiber optic cable solutions provider.

 

Rolling In the Optical Fiber

Rollable Ribbon fiber optic cables are one of the most exciting outside plant (OSP) cabling technologies today. These cables feature rollable ribbons, the newest fiber ribbon design from OFS. This ribbon can be “rolled” (compacted) and routed like individual fibers, allowing the use of smaller closures and splice trays.

 

With up to 3,456 fibers, OFS AccuTube®+ Rollable Ribbon (RR) Cables help network operators double their fiber density in the same size duct or space. They also enable very efficient, cost-effective mass fusion splicing and easy individual fiber breakout. This ability helps simplify installation and save on labor costs. And by maximizing duct use, high-density AccuTube+ RR Cables are an excellent choice for connecting very large fiber distribution hubs. They are also very suitable for data centers, FTTx and access networks.

 

Taking Things Indoors……

With the award-winning AccuRiser RR and AccuFlex® RR Cables, network operators can bring the benefits of rollable ribbon cables indoors. The innovative indoor/outdoor AccuRiser RR Cable helps ease cable installation over ladder racking and through tight bends during routing. This high-density cable is excellent for use in data centers or central offices. It’s also a great choice for building-to-building cable connections along with routing for terminations and frames, and preconnectorized applications.

 

The strong yet flexible, plenum-rated AccuFlex RR Cable helps prevent installation problems such as packing density, routing and deployment speed. This cable’s flame rating meets NFPA 262, allowing the cable to be installed into air-handling spaces. The AccuFlex RR Cable is an outstanding solution for data centers, central offices and head ends.

 

With Limited Space, Go Small (and Dense)

To help solve the problem of deploying or upgrading crowded FTTx or underground networks, OFS created the high-density MiDia®Microcable family. Optimized for exceptional air-blown installation, MiDia microcables can help lower installation costs while increasing fiber optic density and capacity in limited spaces. The MiDia Cable portfolio includes MiDia Micro FX CableMiDia Micro GX Cable and MiDia200 Micro FX Cable.

 

And for network operators who prefer ribbon cables and the benefits of mass fusion splicing, OFS offers the AccuRibbon® DuctSaver® FX Cable. This cable makes optimal use of valuable duct space. It also maximizes the key advantages of air-blown microduct installation: rapid deployment and service turn-up.

 

To learn more about high-density fiber optic cables, visit our website or contact OFS at 1-800-fiberhelp.

 

 

 

Rural Broadband Projects to Receive $97 Million Investment from USDA

The United States Department of Agriculture (USDA) will invest $95 million to improve or expand access to broadband internet in the rural U.S. The 12 projects involved will include converting exchanges from copper to optical fiber and also building a fiber-to-the-home network to meet future demand.

 

These projects will expand access to educational, social and business opportunities for rural subscribers in 11 states by connecting businesses to customers, farmers to markets and students to a world of knowledge.

 

Location Should Not Determine Access

According to Secretary of Agriculture Sonny Perdue, “A person’s location should not determine whether he or she has access to modern communications infrastructure. That is why the USDA is partnering with businesses and communities by investing in state-of-the-art broadband e-connectivity to remote and rural areas.”

 

The USDA is making the investments through the Telecommunications Infrastructure Loan Program and the Community Connect Grant Program.

 

Examples of the Investments

  • Chibardun Telephone Cooperative, Inc. in Cameron, Wisconsin, will receive a $21.4 million loan to improve outside plant facilities in four of its six exchanges. It will construct 675 miles of fiber-to-the-premises and install associated electronics. It plans to build a fiber-to-the-home network capable of sustaining customer demands in broadband connectivity for the foreseeable future.
  • Osage Innovative Solutions, LLC in Tulsa, Oklahoma, will receive a $2.7 million grant to construct a hybrid fiber-to-the-premises and fixed wireless system in an unserved and economically depressed portion of the Osage Nation in Osage County. The company will offer speeds up to 100 megabits per second (Mbps) download and 10 Mbps upload. This project will give customers access to high-quality telecommunications to improve economic, education and health care opportunities. Osage will provide a community center where residents can access the internet free of charge.
  • The Northeast Missouri Rural Telephone Company, in Green City, Missouri, is receiving a $13.7 million loan to convert six exchanges from copper plant to optical fiber to the premises. It will construct nearly 500 route miles of optical fiber.

 

These investments will help to improve the quality of life in rural Arizona, Iowa, Idaho, Maryland, Minnesota, Missouri, Nevada, Oklahoma, South Dakota, Wisconsin and Wyoming.

 

Optical Fiber “Senses” Surroundings

Companies use optical fiber as a sensor to detect changes in temperature and pressure. This technique is often used to monitor structures including bridges and gas pipelines.

 

Now researchers at Ecole Polytechnique Fédérale De Lausanne (EPFL) have discovered a new method where optical fibers can identify when they are in contact with a liquid or a solid. The researchers accomplished this by generating a sound wave with help from a light beam inside the optical fiber.

 

A Sensor That Doesn’t Disrupt the Light

 

Four factors affect the light carried by a glass optical fiber: intensity, phase, polarization and wavelength. These factors can change when something stretches the fiber or the temperature varies. These changes let the fiber act as a sensor by detecting cracks in structures or temperature changes. However, until now, users could not know what was actually happening around the fiber without letting light escape, which interrupts the light path.

 

The method from EPFL uses a sound wave generated inside the fiber. This hyper-frequency wave regularly bounces off of the fiber’s walls. This echo varies at different locations depending on the type of material that the wave contacts. The echoes leave an imprint on the light that users can read when the beam exits the fiber. While users can study this imprint to detect and map out the fiber’s surroundings, it is so faint that it barely disturbs the light within the fiber. In fact, users could employ this technique to sense what is occurring around a fiber and send light-based information at the same time.

 

In experiments, the researchers submerged their fibers in water and then in alcohol, and left them out in the open air. Each time, their system correctly identified the change in the fibers’ surroundings. The group expects their technique to have many potential applications by detecting water leakage, as well as the density and salinity of fluids that touch the fiber.

 

Spatial and Temporal Detection

 

This method discerns changes in the surroundings with a time-based method. Each wave impulse is created with a slight time jag. Then, when the beam arrives, the delay is reflected. The researchers can see what any disturbances were and determine their location. The group can currently locate disturbances to within 10 meters, but have the technical means and expect to increase accuracy down to one meter.

 

To read and learn more, go HERE.

 

 

 

Invisibility Cloaking Could Help to Secure Data Sent Over Optical Fiber

Shades of Harry Potter’s invisibility cloak! A recent study in Optica describes a new way to achieve cloaking invisibility. In this method, researchers manipulated the frequency (color) of light waves passing through an object. This approach overcomes critical shortcomings in existing cloaking technologies. The research team says that this technique could help to secure data sent over optical fiber. It could also improve current technologies for sensing, telecommunications and information processing.

 

Most current cloaking devices can only conceal an object when it is illuminated with just one color of light. However, sunlight and most other light sources are broadband (i.e., they contain many colors). Also, typical cloaking solutions work by changing the dispersion path of the light around the object to be concealed.

 

The new solution avoids these problems by allowing light waves to pass through the object, rather than around it, while still avoiding any interaction between the light waves and the object.

 

To achieve this, the researchers rearranged different colors of broadband light so that the light waves passed through the object without actually “seeing” it. For example, if the object reflected green light, they would then change light in the green portion of the spectrum to another color. In this way, there would be no green light for the object to reflect. Then, once the light wave cleared the object, the cloaking device reversed the shift, returning the wave to its original state.

 

This spectral cloaking device could be useful in working with current telecommunication networks. These systems use broadband waves as data signals to transmit information over optical fiber. Spectral cloaking could selectively determine which operations are applied to a light wave and which are “made invisible” over certain periods of time. Service providers could use this capability to prevent eavesdroppers from gathering information by probing a fiber optic network with broadband light.

 

Also, providers could transmit more data over a given line by selectively removing and then reinstating colors that are used as telecommunication data signals. This capability could help to reduce “logjams” as data demands continue to explode.

 

To learn more, go HERE and HERE.

Fiber Optic Cables as Undersea Seismic Monitors?

Detecting ocean-floor seismic activity is crucial to our understanding of the interior structure and dynamic behavior of the Earth. However, with 70% of the planet’s surface covered by water and only a handful of permanent, ocean-bottom seismometer stations, very little overall seismic activity is actually recorded.

 

Now, a group of researchers from the United Kingdom, Italy and Malta have found a way to use submarine fiber optic cables already deployed on the ocean floor as seismic detectors. In a paper published in the journal Science, the research group outlines how they discovered this capability and how it would operate.

 

Giuseppe Marra, a member of the group, was testing an underground fiber cable between two locations in the United Kingdom. Noticing a small slowdown in signal delivery, he traced it to tiny vibrations bending the light. He then determined that the vibrations were caused by a remote earthquake. This discovery inspired him to explore using fiber optic cables as seismic detectors.

 

(more…)

Get Your “Splice On” With EZ!Fuse™ Splice On Connector System

Meet the new EZ!Fuse Splice On Connector (SOC) Termination System. This system offers an easier-to-use solution that is more reliable and cost-effective than other available splice on and mechanical connectors.

 

The EZ!Fuse SOC system allows for easy termination and flexibility in the field. This new splice on connector requires no field polishing or epoxy which significantly increases the quality and consistency of field connector termination. It also greatly reduces the total installation time needed when compared to traditional methods. In addition, the connector is easily assembled using a process that requires minimal skills and/or training.                                                                       (more…)

Double the Density by “Rolling in the Fiber”

OFS now offers users more ways to double their optical fiber density by expanding the AccuTube®+ Rollable Ribbon Cable product family. These new cables with 432, 576 and 864 fibers feature rollable ribbons, the newest fiber optic ribbon design from OFS. These cables are available in 100% gel-free, all-dielectric single jacket and light armor constructions.

 

Rollable ribbon fiber optic cables are one of the most exciting developments in outside plant (OSP) cabling in years. These cables can help users gain substantial time and cost savings with mass fusion splicing. And they also double the fiber density in a given size duct compared to traditional flat ribbon cable designs.

 

Each OFS rollable ribbon features 12 individual 250 µm optical fibers that are partially bonded to each other at predetermined points. These ribbons can be “rolled” into a flexible and compact bundle that offers the added benefit of improved fiber routing and handling in closure preparation.

 

This completely gel-free cable design also helps to reduce the time needed for splicing preparation by up to 80%. In addition, these rollable ribbon cables are smaller and weigh at least 35% less than conventional flat ribbon cables. This reduced weight improves cable handling and also helps to relieve the tension placed on installation poles.

 

The AccuTube+ Rollable Ribbon Cable product portfolio also features cables with 1728 fibers in both single jacket and light armor designs and 3456 fibers in a single jacket construction. All of these cables meet or exceed the requirements of Telcordia GR-20 issue 4.

 

With its ability to maximize duct utilization, the AccuTube+ Rollable Ribbon Cable is an excellent choice for connecting data centers, and serving as distribution for dense FTTx or mobile networks. To learn more about these cables, go here and here.

 

 

Optical Fibers With Embedded Sensors Dissolve After Monitoring Inside the Human Body

Placing sensors inside the human body can help researchers and physicians to understand and treat a variety of medical conditions. However, while implanting a sensing device may be routine, having it remain in the body long enough to perform its job and then be safely removed is an entirely different and significant challenge.

Now a team of Italian and Greek researchers have embedded fiber Bragg gratings, a type of device that reflects certain light wavelengths and can be used as a sensor, inside of dissolvable optical fibers. This new technology may allow the long-term monitoring of the biomechanical and chemical properties of various organs and anatomical features inside the body.

Fiber Bragg gratings placed into optical fibers are routinely used to measure stresses placed on bridges, commercial airliner wings and other areas where detailed, real-time monitoring is critical. The newly-developed fiber Bragg gratings are able to break down, similar to absorbable sutures and, because they have been embedded into optical fibers that are also bioresorbable, they should be safe for use inside the body. Ideally, they would be implanted, left inside the body to perform sensing and eventually disappear completely without the need for removal. (more…)

Optical Fibers With Embedded Sensors Dissolve After Monitoring Inside the Human Body

Placing sensors inside the human body can help researchers and physicians to understand and treat a variety of medical conditions. However, while implanting a sensing device may be routine, having it remain in the body long enough to perform its job and then be safely removed is an entirely different and significant challenge.

Now a team of Italian and Greek researchers have embedded fiber Bragg gratings, a type of device that reflects certain light wavelengths and can be used as a sensor, inside of dissolvable optical fibers. This new technology may allow the long-term monitoring of the biomechanical and chemical properties of various organs and anatomical features inside the body.

Fiber Bragg gratings placed into optical fibers are routinely used to measure stresses placed on bridges, commercial airliner wings and other areas where detailed, real-time monitoring is critical. The newly-developed fiber Bragg gratings are able to break down, similar to absorbable sutures and, because they have been embedded into optical fibers that are also bioresorbable, they should be safe for use inside the body. Ideally, they would be implanted, left inside the body to perform sensing and eventually disappear completely without the need for removal. (more…)

Optical Fibers With Embedded Sensors Dissolve After Monitoring Inside the Human Body

Placing sensors inside the human body can help researchers and physicians to understand and treat a variety of medical conditions. However, while implanting a sensing device may be routine, having it remain in the body long enough to perform its job and then be safely removed is an entirely different and significant challenge.

Now a team of Italian and Greek researchers have embedded fiber Bragg gratings, a type of device that reflects certain light wavelengths and can be used as a sensor, inside of dissolvable optical fibers. This new technology may allow the long-term monitoring of the biomechanical and chemical properties of various organs and anatomical features inside the body.

Fiber Bragg gratings placed into optical fibers are routinely used to measure stresses placed on bridges, commercial airliner wings and other areas where detailed, real-time monitoring is critical. The newly-developed fiber Bragg gratings are able to break down, similar to absorbable sutures and, because they have been embedded into optical fibers that are also bioresorbable, they should be safe for use inside the body. Ideally, they would be implanted, left inside the body to perform sensing and eventually disappear completely without the need for removal. (more…)

Page 1 of 2212345...1020...Last »