Optical Fibers With Embedded Sensors Dissolve After Monitoring Inside the Human Body

Placing sensors inside the human body can help researchers and physicians to understand and treat a variety of medical conditions. However, while implanting a sensing device may be routine, having it remain in the body long enough to perform its job and then be safely removed is an entirely different and significant challenge.

Now a team of Italian and Greek researchers have embedded fiber Bragg gratings, a type of device that reflects certain light wavelengths and can be used as a sensor, inside of dissolvable optical fibers. This new technology may allow the long-term monitoring of the biomechanical and chemical properties of various organs and anatomical features inside the body.

Fiber Bragg gratings placed into optical fibers are routinely used to measure stresses placed on bridges, commercial airliner wings and other areas where detailed, real-time monitoring is critical. The newly-developed fiber Bragg gratings are able to break down, similar to absorbable sutures and, because they have been embedded into optical fibers that are also bioresorbable, they should be safe for use inside the body. Ideally, they would be implanted, left inside the body to perform sensing and eventually disappear completely without the need for removal. (more…)

Optical Fibers With Embedded Sensors Dissolve After Monitoring Inside the Human Body

Placing sensors inside the human body can help researchers and physicians to understand and treat a variety of medical conditions. However, while implanting a sensing device may be routine, having it remain in the body long enough to perform its job and then be safely removed is an entirely different and significant challenge.

Now a team of Italian and Greek researchers have embedded fiber Bragg gratings, a type of device that reflects certain light wavelengths and can be used as a sensor, inside of dissolvable optical fibers. This new technology may allow the long-term monitoring of the biomechanical and chemical properties of various organs and anatomical features inside the body.

Fiber Bragg gratings placed into optical fibers are routinely used to measure stresses placed on bridges, commercial airliner wings and other areas where detailed, real-time monitoring is critical. The newly-developed fiber Bragg gratings are able to break down, similar to absorbable sutures and, because they have been embedded into optical fibers that are also bioresorbable, they should be safe for use inside the body. Ideally, they would be implanted, left inside the body to perform sensing and eventually disappear completely without the need for removal. (more…)

Fiber Optic Probe May Beat a Biopsy for Measuring Muscle Health

A new fiber optic technique for assessing muscle health could eliminate the need for painful muscle biopsies. To diagnose a muscular disorder, disease or infection, physicians must often extract a tissue sample. However, these biopsies can be quite painful and difficult to perform.

A story in Medical XPress reports that researchers at the Rehabilitation Institute of Chicago (RIC) have developed a less invasive alternative that uses a thin fiber optic probe to quickly scan and measure the health of muscle tissue. And, for the first time, the team has now tested the system on living muscle.

To read the article, please go here. To access the full report in Biophysical Medical, use this link. For information on OFS fiber solutions for medical devices, please click here.

Fiber Optic Probe May Beat a Biopsy for Measuring Muscle Health

A new fiber optic technique for assessing muscle health could eliminate the need for painful muscle biopsies. To diagnose a muscular disorder, disease or infection, physicians must often extract a tissue sample. However, these biopsies can be quite painful and difficult to perform.

A story in Medical XPress reports that researchers at the Rehabilitation Institute of Chicago (RIC) have developed a less invasive alternative that uses a thin fiber optic probe to quickly scan and measure the health of muscle tissue. And, for the first time, the team has now tested the system on living muscle.

To read the article, please go here. To access the full report in Biophysical Medical, use this link. For information on OFS fiber solutions for medical devices, please click here.

Optical Fibers Illuminate Brain Activity

Medical imaging faces limitations inherent to its mode of presentation. While computer models and virtual reality are much more effective than 2D depictions, the result continues to be still images on a computer screen. Even with stereoscopic techniques, a user’s ability to visualize the result can depend on using a keyboard or mouse to interpret the model. And, with 4D experimental medical data (such as MRI), objects are displayed as computer animations or static pictures.

A recent Biophotonics article by Thomas Britton and OFS’ Jaehan Kim shows how a hands-on, 3D-printed brain model equipped with optical fibers can help clinicians and patients to visualize brain function activity while avoiding the shortcomings of 4D neuroimaging techniques.

To access the full article, please click HERE.

Optical Fibers Illuminate Brain Activity

Medical imaging faces limitations inherent to its mode of presentation. While computer models and virtual reality are much more effective than 2D depictions, the result continues to be still images on a computer screen. Even with stereoscopic techniques, a user’s ability to visualize the result can depend on using a keyboard or mouse to interpret the model. And, with 4D experimental medical data (such as MRI), objects are displayed as computer animations or static pictures.

A recent Biophotonics article by Thomas Britton and OFS’ Jaehan Kim shows how a hands-on, 3D-printed brain model equipped with optical fibers can help clinicians and patients to visualize brain function activity while avoiding the shortcomings of 4D neuroimaging techniques.

To access the full article, please click HERE.

OFS Launches New Shape Sensor Fiber at BIOS/Photonics West

 

OFS will showcase its new Shape Sensor Fiber at the BIOS/Photonics West Exposition in San Francisco, January 28-February 2, 2017.

To create the Shape Sensor Fiber, OFS developed a technology platform to produce high-quality, twisted multicore optical fiber with continuous Fiber Bragg Gratings (FBGs). This type of fiber with FBGs provides stable and good signal-to-noise ratio throughout the fiber length and ease of use to customers. The manufacturing platform also allows OFS to customize and optimize the fiber to meet various customer demands more economically. In addition, OFS also offers low back reflection distal termination, multicore connectorization and fan-outs to support customer demand.

Many medical device companies are developing cutting-edge endoscopes, catheters and other equipment with shape sensing technology to increase the quality of patient care. By embedding or surface-attaching the fiber to surgical tools or other devices, technicians can calculate and reconstruct the 3D shape of an instrument on a display screen. By allowing users to monitor the exact shape and position of the instrument, physicians can conduct minimally invasive surgery (MIS) or treatment which generally results in shorter recovery times, less pain and trauma, reduced rates of infection and shorter hospital stays.

To learn more about OFS Shape Sensor Fiber, please go HERE.

OFS Launches New Shape Sensor Fiber at BIOS/Photonics West

 

OFS will showcase its new Shape Sensor Fiber at the BIOS/Photonics West Exposition in San Francisco, January 28-February 2, 2017.

To create the Shape Sensor Fiber, OFS developed a technology platform to produce high-quality, twisted multicore optical fiber with continuous Fiber Bragg Gratings (FBGs). This type of fiber with FBGs provides stable and good signal-to-noise ratio throughout the fiber length and ease of use to customers. The manufacturing platform also allows OFS to customize and optimize the fiber to meet various customer demands more economically. In addition, OFS also offers low back reflection distal termination, multicore connectorization and fan-outs to support customer demand.

Many medical device companies are developing cutting-edge endoscopes, catheters and other equipment with shape sensing technology to increase the quality of patient care. By embedding or surface-attaching the fiber to surgical tools or other devices, technicians can calculate and reconstruct the 3D shape of an instrument on a display screen. By allowing users to monitor the exact shape and position of the instrument, physicians can conduct minimally invasive surgery (MIS) or treatment which generally results in shorter recovery times, less pain and trauma, reduced rates of infection and shorter hospital stays.

To learn more about OFS Shape Sensor Fiber, please go HERE.

OCT Imaging Improves Percutaneous Coronary Intervention

In a recent study, researchers from the University Hospital Jean Minjoz (Besacon, France) demonstrated that optical coherence tomography (OCT) imaging can more readily visualize the coronary arteries in patients undergoing percutaneous coronary intervention (PCI) and lead to better outcomes when compared to standard angiography-guided PCI.

The study found that OCT provided useful additional information beyond that obtained solely by angiography, and impacted directly on physician decision-making. In fact, the use of OCT led to a change in procedural strategy in half of the cases.

In cardiology, the use of OCT involves introducing a miniature fiber optic catheter into the coronary artery to check vessel size, lesion traits and both stent positioning and expansion. OCT is also used in ophthalmology to assess the progression of macular degeneration, glaucoma and other ocular diseases.

To access details of the study, please go here and also here.

OCT Imaging Improves Percutaneous Coronary Intervention

In a recent study, researchers from the University Hospital Jean Minjoz (Besacon, France) demonstrated that optical coherence tomography (OCT) imaging can more readily visualize the coronary arteries in patients undergoing percutaneous coronary intervention (PCI) and lead to better outcomes when compared to standard angiography-guided PCI.

The study found that OCT provided useful additional information beyond that obtained solely by angiography, and impacted directly on physician decision-making. In fact, the use of OCT led to a change in procedural strategy in half of the cases.

In cardiology, the use of OCT involves introducing a miniature fiber optic catheter into the coronary artery to check vessel size, lesion traits and both stent positioning and expansion. OCT is also used in ophthalmology to assess the progression of macular degeneration, glaucoma and other ocular diseases.

To access details of the study, please go here and also here.