Fiber Optic Solutions for Fiber to the Home (FTTH)

A Fiber to the Home Diagram

Fiber to the Home (FTTH) is becoming increasingly more common as bandwidth usage is exploding. This tremendous growth is driven in part by the rapid increase in Internet-connected devices and the use of data-heavy applications such as video on demand. Service providers are working to meet this need for greater bandwidth by expanding the deployment of fiber optic cables to the premises and then into the home.

Service providers building these fiber networks all face a common challenge: the expense of the last mile in the optical network. It is critical for service providers, utilities and municipalities to have an optimized set of deployment options that help to reduce both capital and operational expenses.

The solutions presented in this article meet these challenges with several fiber deployment options from the drop point to and into the home.

OFS FTTx Solutions for the Home can help residents take advantage of the Internet of Things (IoT), which is beginning to redefine how we work and live. These solutions focus on simplicity, cost-effectiveness and speed of installation, along with the pre- and post-installation customer experience, time to revenue generation and reliable subscriber connections that help to improve profitability for the service provider.

FTTH is considered the best technology to handle consumer network demands in the future because of its high bandwidth.

>> Download the Full Guide Now

PRE-TERMINATED vs. FIELD-TERMINATED DROPS

Pre-terminated drop solutions are increasingly used to install fiber to homes to save time and money in higher labor cost regions. Pre-terminated drop solutions consist of drop cables that are terminated and tested in the factory, and easily plugged into the drop terminal and home terminal in the field. Pre-terminated solutions offer lower costs and faster deployment and require less installation skill.

For low labor cost markets, field terminated solutions may be preferred. Field terminated solutions use drop cables which are terminated using fusion splicing or mechanical connectors in the field during installation. They offer easier inventory management, lower material costs and easier slack management, but take longer to install and require more highly skilled labor, along with expensive field termination tools and splicing machines, when compared to pre-terminated solutions.

A third approach, with one end of the drop cable pre-terminated, and the other end field terminated, can solve the slack issue and allow an easy plug-in to the drop terminal and field termination at the home.

OFS offers all three of these drop solution options to fit the unique needs of each service provider. OFS pre-terminated solutions are available with EZ- Bend® cables that can solve the slack management challenge. EZ-Bend fiber optic cables enable the slack to be tied into a very compact bundle.

Providers typically use a combination of aerial and underground solutions to connect the last mile in a network to individual homes. A variety of factors including climate and existing infrastructure can influence solution selection.

>> Download the Full Guide Now

CONNECTING OPTICAL FIBER TO THE HOME

OFS offers a complete portfolio of aerial and underground solutions including terminals, integrated splitters and drop cables to connect to the demarcation point of individual homes. From that location, a number of solutions can be leveraged to take optical fiber into the home.

FTTH Aerial InstallationAerial deployment is typically lower in cost and preferred where poles are in place near homes. In this scenario, a SlimBox® Drop Terminal is installed on a pole, with or without splitters, and then connected by a drop cable to as many as 16 homes. Below grade drop deployment is preferred if there is an existing duct placed from the terminal location to the home, or if below grade cabling is required by local regulations.

First, an installer inserts a feeder or distribution cable into the terminal. The installer then extracts the number of fibers required and fusion splices them to a pre-terminated splitter or drop fiber. Aerial or underground drop cables are then deployed from the terminal to individual residences.

In the case of aerial cables, a drop cable is placed between the pole and a point near a home’s roof. The cable can be connected to a demarcation box and installed into the home through the attic or onto the side of the house at a demarcation box near the ground. To help avoid unsightly aerial cables, an aerial terminal can be connected to an underground drop cable. For aerial deployments, OFS offers the one to 24-fiber Mini LT Flat Drop Cable and the single-fiber Mini TB Flat Drop cable which contains 3 mm cordage that can be routed directly to an Optical Network Terminal (ONT).

>> Download the Full Guide Now

Fiber to the Home Underground Installation IllustrationUnderground drop cable options include the single-fiber EZ-Bend® 3.0 mm and 4.8 mm Ruggedized Cables and EZ-Bend Toneable Cables. The toneable cables enable easy above ground locating of buried cables to help avoid cable cuts when other underground systems are installed. These drop cables are installed from the aerial terminal down the pole to the ground, and are then buried to minimize disruption to landscaping, or pulled into existing duct. The cable is then connected into a demarcation box installed at the side of the house, ideally in a location close to the ONT on the inside.

EZ-Bend cables are preferred since their 2.5 mm bend radius allows the cables to be coiled, bent and tied without creating signal degradation. These cables can also be buried or stapled/clipped and bent around the outer perimeter walls of a home to reach an entry point closer to the preferred ONT location.

New home construction offers a win-win situation for construction companies and service providers. With the ability to “build in” optical fiber connectivity, new homes are futureproofed from the beginning, real estate values increase, and new home owners can become immediate subscribers without the expense of additional installation time. .

Subscribers can be connected faster using preterminated cables installed to and into homes during construction. OFS offers EZ-Bend 3.0 mm and 4.8 mm cables that can be installed independently or in ducts using typical home wiring techniques, such as stapling or zip-tying of the cables, to a location or media panel where the ONT would be later placed. The home owner can later perform a “self install” by receiving an ONT from the service provider, and simply plugging in an EZ-Bend cable assembly and a power adapter to the ONT. OFS also provides a SlimBox Wall Plate that discretely blends into a home’s décor and facilitates ONT connections in the same way as a power outlet.

Existing Homes can pose a challenge to network installers, given the wide variety of possible building architectures. In addition, home designs and construction materials can vary greatly from country to country and even within countries. OFS solutions are purposefully designed and optimized to suit a variety of homes globally and offer maximum flexibility to on-site installers.
Depending on the target market, a provider can choose the terminals and drop cables for an aerial, underground or hybrid solution. The solutions described are the most popular options and feature a variety of products as building block components. This modular product design approach allows service providers to also create custom solutions to meet the specific needs of their target markets.

>> Download the Full Guide Now

When Optical Fiber Arrives

Using optical fiber networks, people can access and share information at an amazing level. They can communicate, work and learn from virtually anywhere there’s an Internet connection. For people in rural communities that lack wireless or broadband services, their ability to obtain information is clearly unequal. Even getting a signal for a cellphone or laptop can mean driving miles to a more populated area. Life is much easier with an available high-speed optical fiber network.

 

Leveling the Playing Field

Implementing optical fiber helps to “level the playing field” by providing more equal access to information and opportunities for rural residents. In reality, optical fiber and wireless services can transform rural communities.

 

When optical fiber arrives, one obvious plus is being able to access a cell signal from home. That wireless service requires optical fiber, which acts as the nervous system of a network. Fiber to the Tower and Fiber to the Building lay the actual groundwork for wireless communications including LTE and 4G, and soon to come 5G. The benefits of this connectivity can be seen in three distinct areas as follows.

 

Rural Healthcare

Digital revolution through high-speed optical fiber Internet helps medical facilities provide better treatment for patients in rural areas in a number of ways, including:

  • Physicians can search files, consult with specialists and use remote diagnostics and alternative healthcare delivery methods;
  • Healthcare professionals may use connected devices to directly monitor and care for patients;
  • Patients practice “self-care” by accessing health-related information on the Internet.

Education

Teachers need optical fiber connectivity for video lectures and e-learning that can be widely shared. Students also need access to home Internet to complete homework and expand their learning. Colleges and universities require high-speed optical fiber Internet access to stay competitive and ensure their degree programs stay relevant.

 

Growth in Rural Communities

With 25% of rural residents lacking Internet access, fiber optic infrastructure build-outs are still needed. More people move into rural areas when they can maintain their standard of living. When optical fiber connectivity is optimal, existing or new businesses can reach and attract highly-qualified employees no matter where they live.

 

In rural areas where high-speed Internet is available, even small businesses and farms can benefit. The Internet of Things (IoT), another product of this digital revolution, makes Smart Farming possible. By applying sensing technologies through Smart Farming, farmers can practice more precise and scientific agriculture that results in increasingly bountiful, high-quality harvests.

Need Premises Fiber Optic Cable? Go Small and Dense!

When you need a fiber-dense yet compact cabling solution for high-bandwidth, high-density applications, look to the R-Pack™ Rollable Ribbon (RR) Backbone Fiber Optic Cable. As the newest member of our award-winning Premises Rollable Ribbon cable portfolio, this cable marks a key step forward in premises building cable innovation.

Doubling the Density

Combining plenum-rated materials with OFS rollable ribbons creates a very compact, yet robust and fiber-dense cable. By featuring rollable ribbons, the latest OFS optical fiber technology, the R-Pack RR Backbone Cable offers twice the fiber density when compared to a traditional flat ribbon premises cable. The result is a reduced diameter, fiber-dense cable that helps customers to substantially improve fiber routing and save on space in congested pathways.

What are Rollable Ribbons?

To form rollable ribbons, 250 micron fibers are partially bonded to each other at intermittent points. Rollable ribbon cables offer the advantages of both loose fibers and traditional flat fiber ribbons in one fiber optic cable. These ribbons can be rolled and routed similarly to individual bare fibers and can also be spliced like traditional fiber ribbons.  Rollable ribbons promote efficient and cost-effective mass fusion splicing while also offering easy breakout of individual fibers. These capabilities can help simplify cable installation, save on splicing time and costs and get a new data center or building deployment up and running quickly.

Versatile Cable

While the R-Pack RR Backbone Cable meets stringent Telcordia GR-409 standards for horizontal backbone applications, its plenum construction also meets NFPA 202 requirements for use in a number of demanding building applications, such as routing through ladder racking and raceways.  This fiber optic cable can also be used in numerous other application spaces or even to construct assemblies.

Featuring 24, 48 or 72 optical fibers in a versatile design, the R-Pack RR Backbone Fiber Optic Cable is a natural choice for use in Data Centers, Central Offices and Fiber-to-the-Business applications.

 

The Incredible Shrinking, Double-Density Fiber Optic Cable

As everyone uses more bandwidth than ever before, today’s networks require more optical fiber in less space. To help address this need, OFS introduced Fortex™ 2DT Fiber Optic Cable, the newest addition to the completely gel-free Fortex DT Cable product line.

 

Fiber Optic Cable: Getting Smaller and More Dense

Fortex 2DT Cable is the industry’s first fully Telcordia GR-20-rated, totally gel-free, loose tube fiber optic cable to feature 200 micron (µm) optical fiber. This fiber literally doubles the fiber count in the cable buffer tubes, significantly increasing fiber density. And, by using AllWave®+ 200 Micron ZWP Single-Mode Fiber, this fiber optic cable also offers more efficient use of network pathways.

 

Just as importantly, the Fortex 2DT Cable design reduces cable outer diameters by up to 18% and areas by up to 32%. This smaller outer cable diameter increases the efficient use of duct and subducts. Plus, cables with reduced outer diameters allow longer continuous cable reel lengths, which can result in fewer splices needed. In a deployment over long distances, less splicing can help create substantial cost savings.

 

Lighter is Better

The Fortex 2DT Cable is also lighter in weight. This lower weight can help to reduce cable pulling tensions which can increase cable pulling lengths. These increased pulling lengths can, in turn, help to save on installation time and costs. For aerial deployments, a lighter-weight cable can also decrease the loads on poles.

 

A Fiber Optic Cable Design for Your Application

The Fortex 2DT Cable product line features single jacket, light armor and armored cable options. These cables are available with up to 288 fibers in Telcordia GR-20 Issue 4 compliant cable designs. While the single jacket cable is an excellehttps://fiber-optic-catalog.ofsoptics.com/item/outdoor-fiber-optic-cables/loose-tube-fiber-optic-cables-1/fortex-2dt-single-jacket-cablent choice for duct, lashed aerial and general outside plant (OSP) installations, the light armor and armored cables feature a layer of rugged electrolytically chrome-coated steel (ECCS) armor. The armored cable also includes an inner polyethylene (PE) jacket. With these added features, the light armor and armored cables offer extra durable crush resistance for more demanding OSP applications, including direct buried in challenging environments.

 

>> View our complete line of Fiber Optic Cable

 

 

Fiber to the Home Growth Keeps Exploding

Smart Home App ConnectivityThe growth in Fiber to the Home (FTTH) just keeps exploding. In fact, for the first time ever, optical fiber passed DSL in home usage during 2018. Fiber is now the second most-frequent connection for North American home Internet.

And FTTH is also the second most-often-used, fixed broadband connection medium in North America. A newly-issued report from the Fiber Broadband Association (FBA) and RVA, LLC featured these statistics.

Fiber Passes xDSL

As of September 2018, the report found that all-fiber access networks surpassed xDSL connections. Almost 60 million homes were FTTH service capable and 23.8 million homes were already connected. These totals represent an increase of 22% from 2017 in terms of “homes marketed.” According to RVA, “homes marketed” depicts market potential more meaningfully than “homes passed” by fiber.

Unsurprisingly, 40.8 million of these homes are in the United States. Another 5.6 million homes are in Canada, 13.1 million in Mexico and 350,000 in the Caribbean.

In terms of the United States, new homes marketed hit a record high of 5.9 million in 2018. Of the 40.8 million homes marketed, the report calls 39.2 million “unique.” This term refers to homes that do not have more than one all-fiber operator seeking their business. Overall. FTTH connects 18.4 million homes in the U.S. Tier 1 telco operators account for 72.6% of these connections. Tier 2 and 3 operators handle 10.3%, and cable operators account for 5.5% of U.S. FTTH connections.

Canada Picks up the Pace

Canadian operators may be rolling out optical fiber faster than U.S. companies, at least in terms of homes marketed compared to total homes. However, FTTH still has a way to go to threaten hybrid fiber/coax (HFC). HFC still delivers slightly more than 50% of broadband connections in North America and FTTH provides not quite 25%.

Fiber is on Fire

According to Lisa R. Youngers, president and CEO of FBA, “The fiber industry is on fire. Fiber holds the key for next-generation connectivity, from 5G to smart cities to the Internet of Things (IOT). This research and analysis helps keep the industry, consumers and policymakers informed about FBA’s progress toward a better-connected future.”

The “Wet Net” World of Underwater Fiber Optic Cables

You panic when even a few drops of water fall on your laptop. Everyone knows that water and electronics don’t “mix.” That’s why it seems so ironic that most of the Internet’s “hard” infrastructure lies underwater on the ocean floor.

Virtually all global data travels through millions of miles of submarine fiber optic cables beneath the ocean’s surface. More than 350 subsea cable lines stretch from the U.S. West Coast to the East Coast, with many more being deployed to connect countries around the world.

Installing submarine fiber optic cables deep on the ocean floor is time consuming and expensive. While special ships deploy the cable, ocean divers repair and maintain the network. And even with thick, protective jackets, there are many ways to damage a cable. Some destructive forces include ship anchors, commercial fishing equipment, earthquakes, hurricanes and even sinister interference. (more…)

5G: What’s All the Hoopla About?

5g and Fiber Optics There’s been lots of excitement and even some “hype” around the idea of 5G. But what is it really? Does it mean just faster internet? Will it really be that much better than 4G? Many people are asking these questions as the FCC begins to auction the first licenses for the airwaves that will carry 5G service.

 

What Is 5G, Really?

5G will be up to 100 times faster than today’s cellular connections – and even faster than many home fiber optic broadband services. But it’s not just about speed. Networks will have greater capacity and respond faster than earlier wireless services. More people and devices will work at the same time on the same network without slowing it to a crawl. And it will do all of this with lower latency. Latency is the time delay between a device contacting the network and receiving a response.

This improved latency will help to bring about some of the most amazing tech trends on the horizon. And while 5G may not change your life right away, it will certainly bring some totally new technologies to life. For now, here are a few of the most exciting apps and technologies that 5G will enable.

Promising 5G Applications

Self-driving vehicles – Self-driving cars will be a common sight with the next generation of wireless service.  And 5G will make vehicle-to-vehicle communication happen – where cars can almost instantly share information between them on their location, speed, acceleration, direction and steering. Many experts believe that this feature will become the greatest lifesaving advance in the auto industry in more than a decade. Using this, cars will know before their drivers when another car moves into your blind spot or when a dump truck that’s six vehicles ahead suddenly stops.

Telesurgery – Remote surgery isn’t new. However, 5G could make a huge difference in providing medical care to millions in distant locations, along with training doctors remotely in surgery and other specialties.

Virtual Reality – For truly realistic virtual reality (VR), a wireless network must carry tons of data. And while it must be fast, the network must also handle this data deluge to create a life-like VR experience. It will take 5G to make this happen.

Drones: 5G technology will let drones talk to one another, helping prevent overhead accidents while in flight.

5G wireless networks can make many of the technologies, applications and experiences that we’ve been waiting for a reality.

Could “Twisted” Fiber Optics Create a 100 Times Faster Internet?

Optical Fiber EndsResearchers at Australia’s RMIT University recently discovered a new fiber optic breakthrough that could lead to 100 times faster internet speeds. This new development detects light that has been twisted into a spiral.

According to research in Nature Communications, developers could upgrade existing fiber optic networks and boost efficiency using this discovery.

HOW IT WORKS

Fiber optic cables use pulses of light to transmit information. However, users can only store that data based on the color of the light and whether the light wave is horizontal or vertical.

The RMIT researchers twisted light into a spiral and created a third dimension for light to carry information – the level of orbital angular momentum, or spin. Dr. Min Gu of RMIT compared it to the double helix spiral of DNA. According to Dr. Gu,  a greater amount of angular momentum allows an optical fiber to carry a larger amount of information.

Researchers have used “twisted light” approaches and orbital angular momentum before. They encoded a greater amount of data in various degrees of twist using these “twisted” methods. In fact, researchers at Boston University and the University of Southern California developed an optic fiber that could twist light. However, the teams used detectors as large as “the size of a dining table.” The RMIT researchers created a reasonably-sized detector that reads the information it holds. The new detector is the width of a human hair.

WHAT IT CAN DO

Providers could upgrade long haul networks around the globe with this new fiber optic technology. These companies include the NBN Co. NBN is deploying Australia’s national broadband network. The company expects to complete this network by 2020.

NBN is “prepared for future demand.” However, they have also stated that fiber optic advances such as this one by RMIT need further testing and acceptance before being deployed. A spokesperson commented, “Laboratories continually test new communications technologies for many years before they are commercialized. Equipment manufacturers and network operators must accept these new methods on a widespread scale before they are ready to be deployed in the field.”

Make Way for High-Density Fiber Optic Cables

High density cable means more fiber density in less space. From 5G to data centers to FTTx, the picture is clear. Everyone uses more bandwidth than ever before. And while bandwidth demand may seem endless, the space to install fiber optic cable isn’t. That’s why being able to install more optical fiber in the same or less space can be a game changer for today’s network operators. And it’s why “High Density” is also a critical word for many service providers today.

With microcables and rollable ribbon cables that increase fiber density while saving on space, OFS is your high-density fiber optic cable solutions provider.

Rolling In the Optical Fiber

Rollable Ribbon fiber optic cables are one of the most exciting outside plant (OSP) cabling technologies today. These cables feature rollable ribbons, the newest fiber ribbon design from OFS. This ribbon can be “rolled” (compacted) and routed like individual fibers, allowing the use of smaller closures and splice trays.

With up to 3,456 fibers, OFS AccuTube®+ Rollable Ribbon (RR) Cables help network operators double their fiber density in the same size duct or space. They also enable very efficient, cost-effective mass fusion splicing and easy individual fiber breakout. This ability helps simplify installation and save on labor costs. And by maximizing duct use, high-density AccuTube+ RR Cables are an excellent choice for connecting very large fiber distribution hubs. They are also very suitable for data centers, FTTx and access networks.

Taking Things Indoors……

With the award-winning AccuRiser RR and AccuFlex® RR Cables, network operators can bring the benefits of rollable ribbon cables indoors. The innovative indoor/outdoor AccuRiser RR Cable helps ease cable installation over ladder racking and through tight bends during routing. This high-density cable is excellent for use in data centers or central offices. It’s also a great choice for building-to-building cable connections along with routing for terminations and frames, and preconnectorized applications.

The strong yet flexible, plenum-rated AccuFlex RR Cable helps prevent installation problems such as packing density, routing and deployment speed. This cable’s flame rating meets NFPA 262, allowing the cable to be installed into air-handling spaces. The AccuFlex RR Cable is an outstanding solution for data centers, central offices and head ends.

With Limited Space, Go Small (and Dense)

To help solve the problem of deploying or upgrading crowded FTTx or underground networks, OFS created the high-density MiDia®Microcable family. Optimized for exceptional air-blown installation, MiDia microcables can help lower installation costs while increasing fiber optic density and capacity in limited spaces. The MiDia Cable portfolio includes MiDia Micro FX CableMiDia Micro GX Cable and MiDia200 Micro FX Cable.

And for network operators who prefer ribbon cables and the benefits of mass fusion splicing, OFS offers the AccuRibbon® DuctSaver® FX Cable. This cable makes optimal use of valuable duct space. It also maximizes the key advantages of air-blown microduct installation: rapid deployment and service turn-up.

To learn more about high-density fiber optic cables, contact OFS at 1-800-fiberhelp.

Rural Broadband Projects to Receive $97 Million Investment from USDA

The United States Department of Agriculture (USDA) will invest $95 million to improve or expand access to broadband internet in the rural U.S. The 12 projects involved will include converting exchanges from copper to optical fiber and also building a fiber-to-the-home network to meet future demand.

These projects will expand access to educational, social and business opportunities for rural subscribers in 11 states by connecting businesses to customers, farmers to markets and students to a world of knowledge.

Location Should Not Determine Access

According to Secretary of Agriculture Sonny Perdue, “A person’s location should not determine whether he or she has access to modern communications infrastructure. That is why the USDA is partnering with businesses and communities by investing in state-of-the-art broadband e-connectivity to remote and rural areas.”

The USDA is making the investments through the Telecommunications Infrastructure Loan Program and the Community Connect Grant Program.

Examples of the Investments

Chibardun Telephone Cooperative, Inc. in Cameron, Wisconsin, will receive a $21.4 million loan to improve outside plant facilities in four of its six exchanges. It will construct 675 miles of fiber-to-the-premises and install associated electronics. It plans to build a fiber-to-the-home network capable of sustaining customer demands in broadband connectivity for the foreseeable future.

Osage Innovative Solutions, LLC in Tulsa, Oklahoma, will receive a $2.7 million grant to construct a hybrid fiber-to-the-premises and fixed wireless system in an unserved and economically depressed portion of the Osage Nation in Osage County. The company will offer speeds up to 100 megabits per second (Mbps) download and 10 Mbps upload. This project will give customers access to high-quality telecommunications to improve economic, education and health care opportunities. Osage will provide a community center where residents can access the internet free of charge.

The Northeast Missouri Rural Telephone Company, in Green City, Missouri, is receiving a $13.7 million loan to convert six exchanges from copper plant to optical fiber to the premises. It will construct nearly 500 route miles of optical fiber.

 

These investments will help to improve the quality of life in rural Arizona, Iowa, Idaho, Maryland, Minnesota, Missouri, Nevada, Oklahoma, South Dakota, Wisconsin and Wyoming.